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Abstract. We solve a class of attractor neural network models with a mixture of 1D nearest-
neighbour interactions and infinite-range interactions, which are both of a Hebbian-type form. Our
solution is based on a combination of mean-field methods, transfer matrices, and 1D random-field
techniques, and is obtained both for Boltzmann-type equilibrium (following sequential Glauber
dynamics) and Peretto-type equilibrium (following parallel dynamics). Competition between the
alignment forces mediated via short-range interactions, and those mediated via infinite-range ones,
is found to generate novel phenomena, such as multiple locally stable ‘pure’ states, first-order
transitions between recall states, 2-cycles and non-recall states, and domain formation leading to
extremely long relaxation times. We test our results against numerical simulations and simple
benchmark cases, and find excellent agreement.

1. Introduction

Solvable models of recurrent neural networks are bound to be simplified representations
of biological reality. The early statistical mechanical studies of such networks, e.g. [1, 2],
concerned mean-field models, whose statics and dynamics are by now well understood, and
have obtained the status of textbook material [3]. The focus in theoretical research has
consequently turned to new areas, such as solving the dynamics of large recurrent networks
close to saturation [4], the analysis of finite size phenomenology [5], solving biologically more
realistic models [6], or networks with spatial structure [7–11]. In this paper we analyse Ising
spin models of recurrent networks with spatial structure, in which there are two coexistent
classes of Hopfield-type [1] interactions: infinite-range ones (operating between any pair of
neurons), and 1D short-range ones (operating between nearest neighbours only). The study
of this type of structure is motivated by the interplay typically observed in cortical tissue
between long-range processing via pyramidal neurons and short-range processing via either
excitatory pyramidal cells or inhibitory interneurons. Indeed, as current evidence suggests in
most cortical areas the interactions are positive at the very short range, on a slightly larger
range inhibitory and again predominantly positive on the very large range.

Due to the presence of short-range interactions however, and in contrast to early papers
on spatially structured networks, solutions based solely on simple mean-field approaches are
ruled out. The analysis requires significantly more complicated methods and the present models
can be solved exactly only by a combination of mean- and random-field techniques [12–16],
whereas for the special case in which the system has stored a single pattern, a simple (Mattis)
transformation allows us to derive the solution via a combination of mean-field methods and
transfer matrices.

0305-4470/00/335785+23$30.00 © 2000 IOP Publishing Ltd 5785
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This paper is organised as follows. We first solve the one-pattern case in which
pattern variables can be transformed away (thus providing a convenient and exactly solvable
benchmark case against which to test the general theory). This also hints at the interesting
features induced by short- versus long-range competition in the more general model. In
particular, already in the one-pattern model we find first-order phase transitions, regimes
corresponding to multiple locally stable states and we find that sequential and parallel dynamics
phase diagrams are related by simple transformations. We then proceed to the general case,
with an arbitrary number of stored patterns, away from saturation regimes. For sequential
dynamics (Boltzmann equilibrium) we adapt the 1D random-field techniques as originally
developed for site-disordered Ising chains, and combine them with mean-field methods; for
parallel dynamics (Peretto equilibrium) we adapt and combine with mean-field methods the
procedure in [16], based on 4×4 random transfer matrices. The disorder-averaged free energy
and the order parameters are found, in closed and exact form, as integrals over the distribution
of a characteristic variable, which represents a specific ratio of conditioned partition functions.
This distribution is calculated following [12, 13].

In the region where the infinite- versus short-range competition is prominent, our theory
predicts a series of (continuous and discontinuous) dynamic phase transitions, and a free-energy
surface with multiple local minima. These features become more prominent, in both number
and strength, when the number of stored patterns increases, in sharp contrast to Hopfield-
type infinite-range networks [1], where ‘pure state’ solutions are independent of the number
of patterns stored. The transition lines of sequential and parallel dynamics phase diagrams
are found to be related by reflection symmetries and also parallel dynamics macroscopic
equations can describe 2-cycles rather than fixed-points solutions. Finally we test our theory
against several exactly solvable cases and against numerical simulations; the latter are found to
exhibit interesting but extremely slow domain-induced dynamics, with plateau phases. Once
equilibration has occurred, we obtain excellent agreement between theory and experiment.

2. Model definitions

We study models with N Ising spin neuron variables σ = (σ1, . . . , σN) ∈ {−1, 1}N , which
evolve in time stochastically on the basis of post-synaptic potentials hi(σ) (or local fields),
following the Glauber-type rule

Prob[σi(t + 1) = ±1] = 1
2 [1 ± tanh[βhi(σ(t))]] hi(σ) =

∑
j �=i
Jij σj + θi . (1)

The parameters Jij and θi represent synaptic interactions and firing thresholds. The (non-
negative) parameter β controls the amount of noise, with β = 0 and ∞ corresponding to
purely random and purely deterministic response, respectively. If the interaction matrix is
symmetric, both a random sequential execution and a fully parallel execution of the stochastic
dynamics (1) will evolve to a unique equilibrium state. The corresponding microscopic state
probabilities can both formally be written in the Boltzmann form p∞(σ) ∼ exp[−βH(σ)],
with associated Hamiltonians [1,17] (since Peretto’s pseudo-Hamiltonian Hpar depends on β,
the associated statistics are not of the Boltzmann form):

Hseq(σ) = − 1
2

∑
i �=j
σiJij σj −

∑
i

θiσi (2)

Hpar(σ) = − 1

β

∑
i

log 2 cosh[βhi(σ)] −
∑
i

θiσi . (3)

In both cases, expectation values of order parameters can be obtained by differentiation of
the free energy per neuron f = − limN→∞(βN)−1 log

∑
σ exp[−βH(σ)], which acts as a
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generating function. For the parameters Jij and θi we now make the following choice†:

Jij = J �ij

N
+ J sij (δi,j+1 + δi,j−1) θi = θ

J �ij = J (1)� + J (2)�

p∑
µ=1

ξ
µ

i ξ
µ

j J sij = J (1)s + J (2)s

p∑
µ=1

ξ
µ

i ξ
µ

j .

(4)

This corresponds to the result of having stored a set of binary patterns {ξ1, . . . , ξp} with
ξ
µ

i ∈ {−1, 1} in a 1D chain of neurons, through Hebbian-type learning, but with different
(potentially conflicting) embedding strengths J (2)s and J (2)� associated with the short-range
versus the infinite-range interactions. We will choose p � N . The parameters J (1)s and J (1)�
control uniform contributions to the interactions within their class. Taking derivatives of f
with respect to J (2)� produces expressions involving the familiar ‘overlap’ order parameters:

sequential: m2 = −2
∂f

∂J
(2)
�

= lim
N→∞

〈(
1

N

∑
i

σiξi

)2〉
eq

parallel: m2 = − ∂f

∂J
(2)
�

= lim
N→∞

〈(
1

N

∑
i

σiξi

)2〉
eq

where the brackets 〈· · ·〉eq denote equilibrium averages, m = (m1, . . . , mp), and xi · xj =∑
µ x

µ

i x
µ

j . Note that for J (2)s = J (2)� = 0 we obtain the simpler model

Jij = J�

N
+ Js(δi,j+1 + δi,j−1) θi = θ. (5)

The Mattis transformation σi → σiξi maps this model onto

Jij = J�

N
ξiξj + Js(δi,j+1 + δi,j−1)ξiξj θi = θξi (6)

which corresponds to the result of having stored just a single pattern ξ = (ξ1, . . . , ξN) ∈
{−1, 1}N . Taking derivatives of f with respect to the parameters θ and Js in (5) produces our
order parameters:

sequential: m = −∂f
∂θ

= lim
N→∞

1

N

∑
i

〈σi〉eq

a= − ∂f

∂Js
= lim
N→∞

1

N

∑
i

〈σi+1σi〉eq

parallel: m = −1

2

∂f

∂θ
= lim
N→∞

1

N

∑
i

〈σi〉eq

a = −1

2

∂f

∂Js
= lim
N→∞

1

N

∑
i

〈σi+1 tanh[βhi(σ)]〉eq

where we have simplified the parallel dynamics observables with the identities

〈σi+1 tanh[βhi(σ)]〉eq = 〈σi−1 tanh[βhi(σ)]〉eq and 〈tanh[βhi(σ)]〉eq = 〈σi〉eq

which follow from (1) and from invariance under the transformation i → N + 1 − i (for all
i). For model (5) m is the average neuronal activity. For sequential dynamics a describes
the average equilibrium state covariances of neighbouring neurons, and for parallel dynamics
it gives the average equilibrium state covariances of neurons at a given time t , and their

† Competition between a different type of uniform infinite-range and random nearest-neighbour interactions has been
studied recently in [19], for sequential dynamics only.
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neighbours at time t + 1 (the difference between the two meanings of a will be important in
the presence of 2-cycles). For model (6) one similarly finds

m = lim
N→∞

1

N

∑
i

〈ξiσi〉eq a = lim
N→∞

1

N

∑
i

〈(ξiσi)(ξi+1σi+1)〉eq.

The observable m is here the familiar overlap order parameter of associative memory
models [1, 2], which measures the quality of pattern recall in equilibrium. Note that
m, a ∈ [−1, 1].

3. Solution and phase diagrams for p = 1

Before we proceed to the solution of the general model (4) we first solve the relatively simple
situation, where a single pattern has been stored following (5) and (6). This has the following
advantages: it being a simpler version of (4), it allows us to explore general features and build
intuition, without as yet any serious technical subtleties, as brought up by the general model.
At the same time it provides an excellent benchmark test of the general theory to which it
should reduce for J (2)s = J (2)� = 0. For the remainder of this section our analysis will refer to
model (5).

3.1. Solution via transfer matrices

In calculating the asymptotic free energy per neuron f it is advantageous to separate terms
induced by the long-range synapses from those induced by the short-range ones, via insertion
of 1 = ∫

dmδ[m − 1
N

∑
i σi]. Upon using the integral representation of the δ-function, we

then arrive at

f = − lim
N→∞

1

βN
log

∫
dm dm̂e−βNφ(m,m̂)

with

φseq(m, m̂) = −imm̂−mθ − 1

2
J�m

2 − 1

βN
logRseq(m̂)

φpar(m, m̂) = −imm̂−mθ − 1

βN
logRpar(m, m̂).

The quantities R contain all complexities due to the short-range interactions in the model.
They correspond to

Rseq(m̂) =
∑

σ∈{−1,1}N
e−iβm̂

∑
i σieβJs

∑
i σiσi+1

Rpar(m, m̂) =
∑

σ∈{−1,1}N
e−iβm̂

∑
i σi
∏
i

log[2 cosh[βJ�m + βθ + βJs(σi+1 + σi−1)]].

They can be calculated using the transfer-matrix method [18] giving

Rseq(m̂) = Tr[TNseq] Tseq =
(

eβJs−iβm̂ e−βJs
e−βJs eβJs+iβm̂

)

Rpar(m, m̂) = Tr[TNpar] Tpar =
(

2 cosh[βw+]e−iβm̂ 2 cosh[βw0]
2 cosh[βw0] 2 cosh[βw−]eiβm̂

)

where w0 = J�m + θ and w± = w0 ± 2Js . The identity Tr[TN ] = λN+ + λN− , in which λ± are
the eigenvalues of the 2 × 2 matrix T enables us to take the limit N → ∞ in our equations.
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The integral over (m, m̂) is then for N → ∞ evaluated by steepest descent, and is dominated
by the saddle points of the exponent φ. We thus arrive at the transparent result

f = extrφ(m, m̂)



φseq(m, m̂) = −imm̂−mθ − 1

2
J�m

2 − 1

β
log λseq

+

φpar(m, m̂) = −imm̂−mθ − 1

β
log λpar

+

(7)

where λseq
+ and λpar

+ are the largest eigenvalues of Tseq and Tpar:

λ
seq
+ = eβJs cosh[iβm̂] + [e2βJs cosh2[iβm̂] − 2 sinh[2βJs]]

1
2

λ
par
+ = cosh[βw+]e−iβm̂ + cosh[βw−]eiβm̂ + [cosh2[βw+]e−2βim̂

+ cosh2[βw−]e2βim̂ − 2 cosh[βw+] cosh[βw−] + 4 cosh2[βw0]]
1
2 .

For simplicity, we will restrict ourselves to the case where θ = 0; generalization of what
follows to the case of arbitrary θ , by using the full form of (7), is not significantly more
difficult. The expressions defining the value(s) of the order parameter m can now be obtained
from the saddle point equations ∂mφ(m, m̂) = ∂m̂φ(m, m̂) = 0. This is a straightforward
differentiation task for the sequential case. For parallel, one obtains a set of coupled nonlinear
equations, namely

m = F(m, m̃) m̃ = F(m̃,m) (8)

where m̃ = −im̂/J� and F(·, ·) corresponds to

F(p, q) =  (p, q)−1(e2βJs sinh[βJ�(p + q)] − e−2βJs sinh[βJ�(p − q)])
 (p, q) = [e2βJs sinh2[βJ�(p + q)] + e−2βJs sinh2[βJ�(p − q)]

+2 cosh2[βJ�p] + 2 cosh2[βJ�q]]
1
2

with (p, q) =  (q, p). We will now show that the parallel dynamics fixed-point problem (8)
admits the unique solution m = sgn[J�]m̃, by the following argument:

For J� � 0 : m = m̃ since 0 � (m− m̃)2 = !(m, m̃)(m− m̃) sinh[βJ�(m̃−m)] � 0

For J� < 0 : m = −m̃ since 0 � (m + m̃)2 = !(m, m̃)(m + m̃) sinh[βJ�(m̃ +m)] � 0.

where !(m, m̃) ≡ 2e−2βJs (m, m̃)−1 > 0.
Insertion of these solutions to the original function F(·, ·) allows us to reduce (8) to a

simple 1D fixed-point problem, similar in structure with what follows from the sequential
case, namely

sequential: m̂ = imJ� m = G(m; J�, Js)
parallel: m̂ = imJ� m = G(m; J�, Js) for J� � 0

m̂ = −imJ� m = G(m; −J�,−Js) for J� < 0
(9)

with

G(m; J�, Js) = sinh[βJ�m]√
sinh2[βJ�m] + e−4βJs

. (10)

The macroscopic observable a is generated by differentiating the reduced free energy per
neuron (7):

sequential: m̂ = imJ� a = F(m; J�, Js)
parallel: m̂ = imJ� a = F(m; J�, Js) for J� � 0

m̂ = −imJ� a = F(m; −J�,−Js) for J� < 0
(11)
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with

F(m; J�, Js) =
cosh[βJ�m]

√
sinh2[βJ�m] + e−4βJs + sinh2[βJ�m] − e−4βJs

cosh[βJ�m]
√

sinh2[βJ�m] + e−4βJs + sinh2[βJ�m] + e−4βJs

. (12)

Note that in the absence of short-range interactions we recover the familiar Curie–Weiss law
m = tanh[βJ�m] whereas in the absence of long-range interactions (9) and (11) reduce to
m = 0 and a = tanh[βJs], as they should. Finally, it is worth noting that equations (9)–(12)
allow us to derive the physical properties of the parallel dynamics model from those of the
sequential dynamics model via simple parameter transformations.

3.2. Phase transitions and phase diagrams

Our main order parameter m is to be solved from an equation of the form m = G(m),
in which G(m) = G(m; J�, Js) for both sequential and parallel dynamics with J� � 0,
whereas G(m) = G(m; −J�,−Js) for parallel dynamics with J� < 0. Note that, due
to G(0; J�, Js) = 0, the trivial solution m = 0 always exists. In order to obtain a
phase diagram we have to perform a bifurcation analysis of the equations (9), (10), and
determine the combinations of parameter values for which specific non-zero solutions are
created or annihilated (the transition lines). Bifurcations of non-zero solutions occur when
simultaneouslym = G(m) (saddle point requirement) and 1 = ∂mG(m) (m is in the process of
being created/annihilated). Analytical expressions for the lines in the (βJs, βJ�) plane where
second-order transitions occur between recall states (where m �= 0) and non-recall states
(where m = 0) are obtained by solving the coupled equations m = G(m) and 1 = ∂mG(m)

for m = 0. This gives

cont trans:
sequential: βJ� = e−2βJs

parallel: βJ� = e−2βJs and βJ� = −e2βJs
(13)

whereas for the macroscopic observable a we obtain

sequential/parallel: a = tanh[βJs].

If along the lines (13) we inspect the behaviour ofG(m) close to m = 0 we can anticipate the
possible existence of first-order transitions, using the properties of G(m) for m → ±∞,
in combination with G(−m) = −G(m). Precisely at the lines (13) we have G(m) =
m + 1

6G
′′′(0) · m3 + O(m5). Since limm→∞G(m) = 1 one knows that, when G′′′(0) > 0, a

discontinuous transition must have already taken place earlier, and that away from the lines (13)
there will consequently be regions where one finds five solutions of m = G(m) (two positive
ones, two negative ones and m = 0). Along the lines (13) the conditionG′′′(0) > 0 translates
into

sequential: βJ� >
√

3 and βJs < − 1
4 log 3

parallel: |βJ�| >
√

3 and |βJs | < − 1
4 log 3.

(14)

In the present models it turns out that one can also find an analytical expression for the
discontinuous transition lines in the (βJs, βJ�) plane, in the form of a parametrization. For
sequential dynamics one finds a single line, parametrized by x = βJ�m ∈ [0,∞):

discont trans: βJ�(x) =
√

x3

x − tanh(x)
βJs(x) = −1

4
log

[
tanh(x) sinh2(x)

x − tanh(x)

]
. (15)

This can be verified by explicit substitution into (9). Since this parametrization (15) obeys
βJs(0) = − 1

4 log 3 and βJ�(0) = √
3, the discontinuous transition indeed starts precisely at
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2−cycles

�J` �J`

�Js �Js

Figure 1. Left: phase diagram for sequential dynamics, involving: (i) a region with m = 0
only (here a = tanh[βJs ]), (ii) a region where both the m = 0 state and two m �= 0 states are
locally stable, and (iii) a region with two locally stable m �= 0 states (with opposite sign, and with
identical a > 0). All solid curves indicate second-order transitions, whereas the dashed curves
indicate first-order ones. Right: phase diagram for parallel dynamics, involving the above regions
and transitions, as well as a second set of transition lines (in the region J� < 0) which are exact
reflections in the origin of the first set. Here, however, the two m �= 0 physical solutions describe
2-cycles rather than fixed points, and the J� < 0 region describes simultaneous local stability of
the m = 0 fixed point and 2-cycles.

the point predicted by the convexity ofG(m) atm = 0, see (14). In the limit x → ∞ the slope
of (15) approaches βJ�(∞)/βJs(∞) → −2. For sequential dynamics the line (15) gives all
non-zero solutions of the bifurcation requirements m = G(m) and 1 = ∂mG(m). For parallel
dynamics one finds, in addition to (15), a second ‘mirror’ transition line, generated by the
transformation {βJ�, βJs} �→ {−βJ�,−βJs}.

Having determined the transition lines in parameter space, we can turn to the phase
diagrams. Figure 1 shows the phase diagram for the two types of dynamics, in the (βJs, βJ�)
plane (note: of the three parameters {β, Js, J�} one is redundant). For sequential dynamics
we find: (i) a region where m = 0 only, (ii) a region where the trivial as well as two non-
trivial states (a positive and a negative one) are all locally stable (selection will thus be based
on initial conditions) and (iii) a region where only m �= 0 states are localy stable. The
transitions (i)→ (iii) and (ii)→ (iii) are second-order ones (solid curves of figure 1) whereas
the transition (i) → (ii) is first order (dashed curve). In region (i), where m = 0 only,
one finds a = tanh[βJs] whereas in regions (ii) and (iii) a is given by the full expression
of (11). For parallel dynamics we find, in addition to the sequential phase transitions, a second
set of ‘mirror’ transition lines generated by {βJ�, βJs} �→ {−βJ�,−βJs}. In contrast to
the sequential case however, here in the region βJ� < 0 and βJs < 0 where m �= 0 can
be a physical state (lower left corner of the phase diagram of figure 1) one finds 2-cycles
between the two m �= 0 (positive and negative) recall states. This can be inferred from the
exact dynamical solution that is available along the line Js = 0 (see, e.g., [3]), given by the
deterministic mapm(t + 1) = tanh[βJ�m(t)]. This map gives a stable period-2 oscillation for
βJ� < −1, of the form m(t) = (−1)tm&, where m& = tanh[β|J�|m&]. In the 2-cycle region
one has a = limN→∞ 1

N

∑
i〈σi+1 tanh[βhi(σ)]〉 < 0. This can be understood on the basis of

the (parallel dynamics) identity 〈σi+1 tanh[βhi(σ)]〉 = 〈σi+1(t)σi(t + 1)〉.
We find that in contrast to models with nearest-neighbour interactions only (J� = 0, where

no pattern recall will occur), and to models with mean-field interactions only (Js = 0, where
pattern recall can occur), the combination of the two interaction types leads to qualitatively new
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0.2

0.4

0.6

0.8

1.0

T m

J` �J`

Figure 2. Left: alternative presentation of the competition region of the sequential dynamics
phase diagram of figure 1. Here the system states and transitions are drawn in the (J�, T ) plane
(T = β−1), for Js = −1. Right: the magnitude of the ‘jump’ of the overlapm along the first-order
transition line (dashed curves in figure 1), as a function of βJ�(x), x ∈ [0,∞), see equation (15).

modes of operation, especially in the competition region, where J� > 0 and Js < 0 (Hebbian
long-range synapses, combined with anti-Hebbian short-range ones). The novel features of the
diagram can play a useful role: the existence of multiple locally stable states ensures that only
sufficiently strong recall cues will evoke pattern recognition; the discontinuity of the transition
subsequently ensures that in the latter case the recall will be of a substantial quality. In the case
of parallel, similar statements can be made in the opposite region of synaptic competition, but
now involving 2-cycles. Since figure 1 cannot show the zero-noise region (β = T −1 = ∞), we
have also drawn the interesting competition region of the sequential dynamics phase diagram
in the (J�, T ) plane, for Js = −1 (see figure 2, left panel). At T = 0 one finds coexistence of
recall states (m �= 0) and non-recall states (m = 0) for any J� > 0, as soon as Js < 0. In the
same figure (right picture) we show the magnitude of the discontinuity in the order parameter
m along the discontinuous transition line, as a function of βJ�.

Finally we show, by way of further illustration of the coexistence mechanism, the value
of reduced exponent φseq(m) given in (7), evaluated upon elimination of the auxiliary order
parameter m̂: φ(m) ≡ φseq(m, imJ�). The result, for the parameter choice (β, J�) = (2, 3)
and for three different short-range coupling stengths (corresponding to the three phase regimes:
non-zero recall, coexistence and zero recall) is given in figure 3. In the same figure we also
give the sequential dynamics bifurcation diagram displaying the value(s) of the overlap m as
a function of βJ� and for βJs = −0.6 (a line crossing all three phase regimes in figure 1).

4. Solution and phase diagrams for arbitrary p

In the general case (4), where p > 1, the pattern variables {ξµi } can no longer be transformed
away as in model (6); here in order to arrive at expressions for the order parameters one has to
perform the disorder average of the free energy over the realization of {ξµi }. Due to the addition
of nearest neigbour interactions, however, the disorder average has become significantly more
complicated than that in infinite-range models, even in the loading regime away from saturation
(i.e. limN→∞ p/N = 0). Nevertheless, interpreting the pattern variables {ξi} as random bonds
one can perform the transfer-matrix multiplications (and thus the relevant disorder average)
via a suitable adaptation of 1D random-field techniques, see e.g. [12,13,16]. These are based
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Figure 3. Left: free energy per neuron φ(m) = φseq(m, imJ�) as derived from equation (7) for
(β, J�) = (2, 3). The three curves correspond to regimes where (i) m �= 0 only (dashed curve:
Js = −0.2) (ii) trivial and non-trivial states are both locally stable (solid curve: Js = −0.8),
and (iii) m = 0 only (dot-dashed curve: Js = −1.2). Right: sequential dynamics bifurcation
diagram displaying for βJs = −0.6 the possible recall solutions. For small βJ�,m = 0 is the only
stable state. At a critical βJ� given by (15), m jumps to non-zero values. For increasing βJ� the
unstable m �= 0 solutions (thin curves) converge towards the trivial one until βJ� = exp(−βJs)
(here: βJ� ≈ 3.32) where a second-order transition takes place and m = 0 becomes unstable.

on the derivation of a stochastic process in which observables of systems of sizeN are mapped
to observables of systems of size N + 1. We will assume that in the thermodynamic limit
this process leads to a unique stationary state. The free energy is then given as an integral
over the distribution of a characteristic ratio of conditioned partition functions, and the order
parameters follow via differentiation. We will now proceed with the solution of the general
p > 1 case first for the less complicated sequential case (which will also serve as a guide to
the technique) and then for the more involved parallel scenario.

4.1. Adaptation of RFIM techniques: sequential case

4.1.1. Disorder averaging and the free energy. We introduce the notation m& = (m0,m),
m̂& = (m̂0, m̂), ξ& = (ξ 0, ξ) where ξ 0 = 1. We separate the overlap order parameter via
insertion of 1 = ∫

dm& δ[m& − 1/N
∑
i σiξ

&
i ], and after replacing the δ-functions by their

integral representation we obtain

f = − lim
N→∞

1

βN
log

∫
dm& dm̂&e−βNφN (m&,m̂&)

where

φN(m
&, m̂&) = −im& · m̂& −m0θ − 1

2
J
(1)
� m

2
0 − 1

2
J
(2)
� m2 − 1

βN
logRN(m̂

&). (16)

The quantity RN(m&, m̂&) contains as in model (5) in section 3, the summation over
σ = (σ1, . . . , σN) and the short-range neuron interactions

RN(m̂) =
∑

σ∈{−1,1}N
e−iβ

∑
i σim̂

&·ξ&i eβ
∑
i σiJ

s
i,i+1σi+1 J si,i+1 ≡ J (1)s + J (2)s ξi · ξi+1. (17)

Due to the appearance of the random variables {ξ} in the partition sum above one can no
longer perform the transfer matrix multiplications in a trivial manner as in the p = 1 case.
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To evaluate (17) we will first separate RN into two different constituent parts, defined by
conditioning the state of the last neuron in the chain[

RN,↑
RN,↓

]
=
∑

σ

e−iβ
∑
i σim̂

&·ξ&i eβ
∑
i σiJ

s
i,i+1σi+1

[
δσN ,1
δσN ,−1

]
(18)

with

RN = RN,↑ + RN,↓. (19)

We now add an extra neuron to the chain. After some simple bookkeeping and assuming
non-periodic boundary conditions we derive the following recurrence relations:(

RN+1,↑
RN+1,↓

)
=
(

eβ(J
s
N,N+1−im̂&·ξ&N+1) e−β(J sN,N+1+im̂&·ξ&N+1)

e−β(J sN,N+1−im̂&·ξ&N+1) eβ(J
s
N,N+1+im̂&·ξ&N+1)

)(
RN,↑
RN,↓

)
. (20)

The recurrence matrix relation (20) will form the basis for evaluating the free energy per
neuron, which will allow us to conviniently perform the partition sum in (17). In the spirit
of [12,13] we define the ratio between the conditioned quantities (18) and study their stochastic
‘evolution’ generated by adding new neurons successively to the chain

kj+1 = e−2βim̂&·ξ&j+1
Rj+1,↓
Rj+1,↑

. (21)

Due to their dependence on the random variables {ξ} the above quantities {kj } are stochastic
variables. Insertion of (20) into the above relations produces the 1D stochastic map

ki+1 = ψ(kj ; ξj · ξj+1, m̂
& · ξ&j |∀j � i)

= e−βJ si,i+1 + kie2βim̂&·ξ&i eβJ
s
i,i+1

eβJ
s
i,i+1 + kie2βim̂&·ξ&i e−βJ si,i+1

. (22)

One can now express the non-trivial part of the free energy in terms of the above ratios ki by
first using (19):

− 1

βN
logRN = − 1

βN
logRN,↑ + O

(
1

N

)
.

Upon also using (21) and (22) iteratively, in order to map the quantities {Rj,↑} onto {Rj−1,↑}
(for all j � N ), one can write the above expressions in the form

− 1

βN
logRN,↑(m&) = − 1

βN

∑
i

log[eβJ
s
i,i+1 + e−βJ si,i+1 e2βim̂&·ξ&i ki]

+
1

N

∑
i

im̂& · ξ&i+1 + O
(

1

N

)
. (23)

For N → ∞ the above expressions are self-averaging and the boundary terms vanish, giving

− lim
N→∞

1

βN
logRN(m̂

&) = i〈m̂& · ξ&〉ξ − 1

β

∑
ξ′ξ

∫
dk′ P(k′, ξ′, ξ)

× log[eβ(J
(1)
s +J (2)s ξ′·ξ) + eβ(J

(1)
s +J (2)s ξ′·ξ)e2βim̂&·ξ& ′k′] (24)

in which the probability distribution P(· · ·) is defined as follows:

P(k′, ξ′, ξ) = lim
N→∞

1

N

∑
i

〈δ[k′ − ki]δ[ξ′ − ξi]δ[ξ − ξi+1]〉eq

= 1

2p
P (k′, ξ′). (25)
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In order to arrive at factorization of the joint probability distributions we have used the fact
that, due to the form of the stochastic map (22), the quantities {kj } are independent of {ξj+1},
i.e. of the pattern variables at the next site. The dependence on {ξj }, however, does not allow us
to write down immediately (22) in terms of a Markov process. We thus introduce the auxiliary
variables {λj }, so that {ξj } itself becomes one of the stochastically evolving variables, and the
extended process becomes indeed Markovian:(

k

λ

)
i+1

= +
[(
k

λ

)
i

; ξi+1

]
=
(
ψ(ki; λi · ξi+1, m̂

& · λ&i )

ξi+1

)
.

Equivalently

Pi+1(k,λ) = 1

2p
∑
λ′

∫
dk′W

[(
k′

λ′

)
→
(
k

λ

)]
Pi(k

′,λ′) (26)

where for the transition probabilitiesW [· · ·] we define

W

[(
k′

λ′

)
→
(
k

λ

)]
= 〈δξ,λδ[k − ψseq(k

′,λ′ · ξ, m̂& · λ&′)]〉ξ.

The evaluation of the non-trivial part of the free energies (24) has now been reduced to
determining the (stationary) distribution of (26), which will be denoted by P∞(k). To achieve
this final objective we follow [12,13] and introduce the integrated densities P̂ (k) = ∫ k

0 dz P (z).
After some algebra to eliminate the δ-functions of the transition probabilities via the identity∫

dx δ[g(x)]f (x) = f (ginv(0))/|∂xg(0)|, we then obtain the following recursive relation:

P̂i+1(k,λ) = 1

2p
∑
λ′
P̂i(B(k; λ′ · λ, m̂& · λ&′),λ′) (27)

where the function B(k) corresponds to

B(k) = keβ(J
(1)
s +J (2)s λ′·λ) − e−β(J (1)s +J (2)s λ′·λ)

eβ(J
(1)
s +J (2)s λ′·λ) − ke−β(J (1)s +J (2)s λ′·λ)

e−2βim̂&·λ& ′ . (28)

We have thus derived as yet fully exact expressions for the disorder-averaged free energy (24),
as integral over the distribution of the stochastic quantity {k}, which can be evaluated by
numerical iteration of the recursive relation (27).

4.1.2. The ‘pure state’ ansatz and symmetries of the model. We will now look for the so-
called ‘pure-state’ solutions: we will assume that for N → ∞ there is only one component
mµ of order O(1) (for simplicity we will take µ = 1) whereas for all µ > 1 mµ is of order
O(N− 1

2 ): m& = (m0,m, 0, . . . , 0) and m̂& = (m̂0, m̂, 0, . . . , 0). This is the standard ansatz
made in (infinite-range) associative memory models, which gives the dominant states of the
system. The fact that this is also true for the present type of models is supported by numerical
simulations, see section 6. Using this simplification we will now prove that the stationary
integrated density P̂∞(· · ·) is independent of all non-condensed pattern components. This will
be shown by induction. We will show that if P̂i(k,λ) is independent of λµ for some µ > 1,
then P̂i+1(k,λ) will also be independent of λµ. This will then immediately imply that if the
densities are independent of {λµ} for all µ > 1 at step i of the process (27), this will remain so
for all µ > 1 at any step j > i. Usage of the spin-flip operator Fµx = (x1, . . . ,−xµ, . . . , xp)
allows us to write

 i+1 = P̂i+1(k, Fµλ)− P̂i+1(k,λ)

= 1

2p
∑
λ′

{P̂i(B(k; λ′ · λ, m̂0 + m̂λ′), Fµλ′)− P̂i(B(k; λ′ · λ, m̂0 + m̂λ′),λ′)}.
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If at step i the identity  i = 0 is true, then P̂i(B(k), Fµλ) = P̂i(B(k),λ) and thus  i+1 = 0.
Upon choosing suitable initial conditions we can thus construct equilibrium integrated densities
with the stated property; combination with the assumed ergodicity of the process then implies
that the unique solution must have the property. This completes the proof. We can consequently
write the stationary integrated densities in the form: P̂∞(k, λ), where λ ∈ {−1, 1} corresponds
to the condensed pattern component

P̂i+1(k, λ) = 1
2

∑
λ′=±1

P̂i(B(k; λ′λ, m̂0 + m̂λ′), λ′) (29)

where B(k) is given by (28). One can also exploit the fact that the pattern variables {λ} appear
in inner-products only, to simplify the non-trivial integrated expressions of equation (24). Since
the argumentation will be qualitative we will forget about the details of these expressions and
we will denote the integrated logarithmic expressions simply by

0(λ′ · λ) = log[eβ(J
(1)
s +J (2)s λ·λ′) + e−β(J (1)s +J (2)s λ·λ′) + k′e2βi(m̂0+m̂λ′)].

Upon using the gauge transformation λµ = τµλ
′
µ where τµ are auxiliary Ising variables,

the non-trivial parts of expressions (24)—corresponding to the integrals over the stochastic
variables {kj } after the distribution factorization (25) and the ‘pure state’ ansatz—take the form

1

2p
∑
λ′

∑
λ

∫
dk′ P s

∞(k
′, λ′)0(λ′ · λ; k′, m̂0 + m̂λ′)

= 2p−1

2p
∑
λ′

∑
τ

∫
dk′ P s

∞(k
′, λ′)0

( p∑
µ=1

τµ; k′, m̂0 + m̂λ′
)

= 1
2

∑
λ′=±1

p∑
Nτ=0

∫
dk′

(
p

Nτ

)
P s

∞(k
′, λ′)0(2Nτ − p; k′, m̂0 + m̂λ′)

where Nτ represents the number of neurons with states equal to +1 in the configuration of τ .
We have thus replaced all summations over the 2p configurations of the vectors {λ,λ′} and by
summations over binary- and p-state variables.

4.2. Adaptation of RFIM techniques: parallel case

4.2.1. Disorder averaging and the free energy. The analysis of the parallel dynamics model
follows closely the sequential one. We start by introducing the notation m& = (m0,m), m̂& =
(m̂0, m̂), ξ& = (ξ 0, ξ)where ξ 0 = 1 in the expression for the free energy per neuron. As before,
we separate the overlap order parameter via insertion of 1 = ∫

dm& δ[m& − 1/N
∑
i σiξ

&
i ],

and we replace the δ-functions by their integral representation giving

f = − lim
N→∞

1

βN
log

∫
dm& dm̂&e−βNφN (m&,m̂&)

φN(m
&, m̂&) = −im& · m̂& −m0θ − 1

βN
logRN(m

&, m̂&)

(30)

with

RN(m
&, m̂&) =

∑
σ∈{−1,1}N

e−iβ
∑
i σim̂

&·ξ&i
∏
i

log[2 cosh[β(J �i + σi−1J
s
i−1,i + σi+1J

s
i,i+1)]] (31)

where the short-hands J si,i+1 and J �i correspond to

J si,i+1 = J (1)s + J (2)s ξi · ξi+1 J �i = θ + J (1)� m0 + J (2)� ξi · m.
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As in the sequential case we now aim to derive a recurrence relation between conditioned
quantities which follow from RN and which will allow us to perform the partition sum and
express observable quantities in terms of simple stochastic variables. It appears that this can
be achieved here by conditioning the quantityRN on the states of the last two spins of the chain
producing the following four quantities:

RN,↑↑
RN,↑↓
RN,↓↑
RN,↓↓


 =

∑
σ

e−iβ
∑
i σim̂

&·ξ&i e
∑
i log[2 cosh[β(J �i +σi−1J

s
i−1,i+σi+1J

s
i,i+1)]]



δσN−1,1δσN ,1
δσN−1,1δσN ,−1

δσN−1,−1δσN ,1
δσN−1,−1δσN ,−1


 . (32)

We now add an extra neuron to the chain. Assuming non-periodic boundary conditions we
derive the matrix relations(

RN+1,↑↑
RN+1,↑↓

)
= 2Q+

N,N+1

( e−iβm̂& ·ξ&
N+1

Q+
N−1,N

A
(N)

(+,+)
e−iβm̂& ·ξ&

N+1

Q−
N−1,N

A
(N)

(−,+)
eiβm̂& ·ξ&

N+1

Q+
N−1,N

A
(N)

(+,−)
eiβm̂& ·ξ&

N+1

Q−
N−1,N

A
(N)

(−,−)

)(
RN,↑↑
RN,↓↑

)

(
RN+1,↓↑
RN+1,↓↓

)
= 2Q−

N,N+1

( e−iβm̂& ·ξ&
N+1

Q+
N−1,N

A
(N)

(+,+)
e−iβm̂& ·ξ&

N+1

Q−
N−1,N

A
(N)

(−,+)
eiβm̂& ·ξ&

N+1

Q+
N−1,N

A
(N)

(+,−)
eiβm̂& ·ξ&

N+1

Q−
N−1,N

A
(N)

(−,−)

)(
RN,↑↓
RN,↓↓

) (33)

with the short-hand abbreviations

A
(n)

(±,±) = A(n)(±,±)(ξn−1 · ξn, ξn · ξn+1, ξn · m) = cosh[β(J �n ± J sn−1,n ± J sn,n+1)]

Q±
n,n+1 = Q±(ξn · ξn+1, ξn · m) = cosh[β(J �n+1 ± J sn,n+1)].

(34)

The fact that parallel dynamics leads to a recurrence process given by 4 × 4 random matrices,
instead of the simpler 2 × 2 random matrices of the sequential case, is due to the appearance
of short-range couplings of the form cosh[β(J �i + σi−1J

s
i−1,i + σi+1J

s
i,i+1)] in (31), rather than

the more familiar exponentials. This, in turn, is an immediate consequence of the form of the
pseudo-Hamiltonian (3). We also note that in the parallel case the two reduced 2 × 2 matrices
differ only by the prefactorsQ±

N,N+1. The recurrence matrices (33) will now allow us to follow
in the footsteps of the sequential analysis and evaluate the asymptotic free energy per neuron.
We also note that adding the four new quantities (32) one recovers RN :

RN = RN,↑↑ + RN,↑↓ + RN,↓↑ + RN,↓↓. (35)

In order to evaluate the relevant partition sum we will use the ratios of the conditioned
quantities (32). For that purpose we define

k
(1)
n+1 = e−2βim̂&·ξ&n+1

Rn+1,↑↓
Rn+1,↑↑

k
(2)
n+1 = e−2βim̂&·ξ&n+1

Rn+1,↓↓
Rn+1,↓↑

k
(3)
n+1 = Q+

n,n+1

Q−
n,n+1

Rn+1,↓↓
Rn+1,↑↓

.

(36)

As in the less involved sequential case, all the equilibrium properties of the parallel dynamics
model will be dominated by the stationary distribution of these variables. Insertion of the
matrix elements of (33) into (36) gives

k
(1)
n+1 = A

(n)

(+,−)k
(2)
n + A(n)(−,−)k

(1)
n k

(3)
n

A
(n)

(+,+)k
(2)
n + A(n)(−,+)k

(1)
n k

(3)
n

k
(2)
n+1 = A

(n)

(+,−) + A(n)(−,−)k
(3)
n

A
(n)

(+,+) + A(n)(−,+)k
(3)
n

k
(3)
n+1 = A

(n)

(+,−)k
(1)
n k

(2)
n + A(n)(−,−)k

(1)
n k

(2)
n k

(3)
n

A
(n)

(+,−)k
(2)
n + A(n)(−,−)k

(1)
n k

(3)
n

e2βim̂&·ξ&n .

(37)

The above stochastic mappings turn out to be greatly simplified: we observe that, if the identity
k(1)n = k(2)n is true, then also k(1)n+1 = k

(2)
n+1. Furthermore, it can be easily checked that this is
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the case for n = 2. We are thus guaranteed that k(1)n = k(2)n for all n � 2, and now all three
quantities {k(1)n , k(2)n , k(3)n } can be expressed (for any n � 2) in terms of a single stochastic
variable which we will take to be k(1)n ≡ kn:

k
(1)
n+1 = kn+1 k

(2)
n+1 = A

(n)

(+,−) + A(n)(−,−)kn−1e2βim̂&·ξ&

A
(n)

(+,+) + A(n)(−,+)kn−1e2βim̂&·ξ& k
(3)
n+1 = kne2βim̂&·ξ&n . (38)

Therefore, the parallel dynamics problem can be described as the sequential one by a single
stochastic process

ki+1 = ψ(kj−1; ξj−1 · ξj , ξj · ξj+1,m · ξj , m̂
& · ξ&j−1|∀j � i)

= (cosh[β(J �i + J si−1,i − J si,i+1)]

+e2βim̂&·ξ&i−1ki−1 cosh[β(J �i − J si−1,i − J si,i+1)])

×{cosh[β(J �i + J si−1,i + J si,i+1)]

+e2βim̂&·ξ&i−1ki−1 cosh[β(J �i − J si−1,i + J si,i+1)]}−1. (39)

We note in passing that the process (39) distinguishes between even and odd sites, and produces
two independent sets of stochastic variables {kj }.

We now turn to the evaluation of the non-trivial part of the free energy (30) which we first
write as

− 1

βN
logRN = − 1

βN
logRN,↑↑ + O

(
1

N

)
.

Using the ratios {k(�)n ; � = 1, 2, 3} (36) iteratively to map the quantities {Rn,↑↑} onto {Rn−1,↑↑}
(for all n � N ) and subsequently reduce the three ratios {k(�)n } to a single one via (38) one can
write the above expressions in the form

− 1

βN
logRN,↑↑(m&, m̂&) = − 1

βN

∑
i

log[2 cosh[β(J �i+1 + J si,i+1 + J si+1,i+2)]

+2 cosh[β(J �i+1 − J si,i+1 + J si+1,i+2)]e
2βim̂&·ξ&i ki]

+
1

N

∑
i

im̂& · ξ&i+1 − 1

βN

∑
i

log[Q+
i+1,i+2/Q

−
i+1,i+2] + O

(
1

N

)

where the terms Q±
j,k are defined at (34). For N → ∞ the above expressions self-average

giving

− lim
N→∞

1

βN
logRN(m

&, m̂&) = i〈m̂& · ξ&′〉ξ′ − 1

β
log 2 − 1

β

〈
log

[
Q+(ξ′ · ξ, ξ · m)

Q−(ξ′ · ξ, ξ · m)

]〉
{ξ′,ξ}

− 1

β

∑
ξ′′ξ′ξ

∫
dk′′ P(k′′, ξ′′, ξ′, ξ) log[A(+,+)(ξ

′′ · ξ′, ξ′ · ξ, ξ′ · m)

+A(−,+)(ξ′′ · ξ′, ξ′ · ξ, ξ′ · m)k′′e2βim̂&·ξ& ′′ ] (40)

in which the probability distribution P(· · ·) is defined as the equilibrium expectation value:

P(k′′, ξ′′, ξ′, ξ) = lim
N→∞

1

N

∑
i

〈δ[k′′ − ki−1]δ[ξ′′ − ξi−1]δ[ξ′ − ξi]δ[ξ − ξi+1]〉eq

= 1

22p
P (k′′, ξ′′). (41)
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Factorisation in the last step of (41) has been achieved due to the fact that the quantity {kn} is
independent of {ξn+1}, see (39). Nevertheless, to arrive to a Markovian process we are forced
to introduce (as in the sequential case) the auxiliary variables {λn}:(
k

λ

)
i+1

= +
[(
k

λ

)
i−1

; ξi+1, ξi

]
=
(
ψ(ki−1; λi−1 · ξi , ξi · ξi+1,m · ξi , m̂

& · λ&i−1)

ξi+1

)
.

Equivalently

Pi+1(k,λ) = 1

2p
∑
λ′′

∫
dk′′W

[(
k′′

λ′′

)
→
(
k

λ

)]
Pi(k

′′,λ′′) (42)

with W [· · ·] defined as the probability for state (k′′,λ′′) to move into state (k,λ) averaged
over the random variables {ξ, ξ′} (which control the ‘path’ of the states)

W

[(
k′′

λ′′

)
→
(
k

λ

)]
= 〈δξ,λδ[k − ψ(k′′,λ′′ · ξ′, ξ′ · ξ,m · ξ′, m̂& · λ&′′)]〉ξξ′ .

We will assume that in the limit i → ∞ the density (42) becomes stationary. Again, as in
the sequential case the evaluation of the non-trivial part of the asymptotic free energy (40) has
been reduced to determining the asymptotic distribution function (42), which will be denoted
by P∞(k). We introduce the integrated density P̂ (k) = ∫ k

0 dz P (z) which allows us to derive
the following recursive relation:

P̂i+1(k,λ) = 1

22p

∑
λ′′

∑
ξ′
P̂i(B(k; λ′′ · ξ′, ξ′ · λ,m · ξ′, m̂& · λ&′),λ′′) (43)

where the function B(k) corresponds to

B(k) = kA(+,+) − A(+,−)
A(−,−) − kA(−,+) e

−2βim̂&·λ& ′′ (44)

with

A(±,±) = A(±,±)(λ′′ · ξ′, ξ′ · λ,m · ξ′)
= cosh[β(J �(m · ξ′,m0, θ)± Js(λ′′ · ξ′)± Js(ξ′ · λ))].

Equation (43) differs from the corresponding sequential one (27) by the appearance of a second
summation over a 2p-state variable. This will be simplified further in the following section.
To this stage we have derived (as in the simpler sequential case) expressions for the parallel
dynamics free energy (40), as integrals over the distribution of the stochastic quantity {k} which
can be evaluated by numerical iteration of (43).

4.2.2. The ‘pure state’ ansatz and symmetries of the model. We will now restrict ourselves to
the ‘pure-state’ solutions: m& = (m0,m, 0, . . . , 0) and m̂& = (m̂0, m̂, 0, . . . , 0). Following
this ansatz we will also prove by induction that the stationary integrated density P̂∞(· · ·) (43)
is independent of all non-condensed pattern components, based on the same line of reasoning
as in the sequential case: we will show that the difference between two integrated densities
which differ by having their µth pattern variable flipped remains zero:

 i+1 = P̂i+1(k, Fµλ)− P̂i+1(k,λ)

= 1

22p

∑
λ′′,ξ′

{P̂i(B(k; λ′′ · ξ′, ξ′ · λ,m0 +mξ ′, m̂0 + m̂λ′′), Fµλ′)

−P̂i(B(k; λ′′ · ξ′, ξ′ · λ,m0 +mξ ′, m̂0 + m̂λ′′),λ′)}.
If at step i the identity  i = 0 is true, then P̂i(B(k), Fµλ) = P̂i(B(k),λ) and thus  i+1 = 0.
This identity now implies that if the density P̂i(k,λ) is independent of all {λµ;µ > 1} at
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step i of the recurrence process (43), this will remain the case for all steps j > i. We
can therefore construct densities with appropriate initial conditions which together with the
assumed ergodicity implies that the unique stationary solution must have the stated property.
We can consequently simplify our notation and drop all non-condensed pattern components
(since they are shown to be completely irrelevant) and write (43) in the simple form

P̂i+1(k, λ) = 1
4

∑
λ′′=±1

∑
ξ ′=±1

P̂i(B(k; λ′′ξ ′, ξ ′λ,m0 +mξ ′, m̂0 + m̂λ′′), λ′′) (45)

where the function B(k) is given by (44). Finally, it turns out that one can again simplify
the summations over the 2p configurations of the various vector variables appearing in (40)
and replace them by summations over binary and p-state variables. We denote the integrated
logarithmic expressions of (40) by

0(λ′′ · ξ′, ξ′ · λ) = log[A(+,+)(λ
′′ · ξ′, ξ′ · λ, ξ ′m)

+A(−,+)(λ′′ · ξ′, ξ′ · λ, ξ ′m)k′′e2βi(m̂0+m̂λ′′)].

Using the gauge transformations λ′′
µ = τµξ

′
µ and λµ = ηµξ

′
µ, where τµ, vµ ∈ {−1, 1}, the

non-trivial part of (40) takes the form

1

22p

∑
λ′′

∑
ξ′

∑
λ

∫
dk′′ P∞(k′′, λ′′)0(λ′′ · ξ′, ξ′ · λ,mξ ′; k′′, m̂0 + m̂λ′′)

= 2p−1

22p

∑
τ

∑
ξ ′

∑
η

∫
dk′′ P∞(k′′, τ1ξ

′)

×0
(
τ1 +

p∑
µ=2

τµ,

p∑
µ=1

ηµ,mξ
′; k′′, m̂0 + m̂τ1ξ

′
)

= 1
4

∑
τ1=±1

∑
ξ ′=±1

p−1∑
Nτ=0

p∑
Nη=0

∫
dk′′

(
p − 1
Nτ

)(
p

Nη

)
Pp∞(k

′′, τ1ξ
′)

×0(τ1 + 2Nτ − p + 1, 2Nη − p,mξ ′; k′′, m̂0 + m̂τ1ξ
′)

where Nτ and Nη represent the number of neurons with states equal to +1 in the configurations
of τ , η respectively.

4.3. Phase diagrams

From this point onwards our discussion will cover both the sequential as well as the parallel
case. In order to calculate phase transitions and draw phase diagrams we will first calculate the
free-energy surfaces (16) and (30) which at this stage are still functions of the order parameters
m and m̂. For simplicity we will now set θ = 0. The distributions P s∞(· · ·) and Pp∞(· · ·) can
be calculated numerically via iteration of (29) and (45), and bifurcations of the non-trivial
values for the pure state overlap from the trivial solution (if they exist) will then be given as
the solutions of the following fixed-point problems:

sequential: m = ∂im̂Fseq(im̂) at im̂ = −J (2)� m
parallel: m = ∂im̂Fpar(im̂,m) at im̂ = ∂mFpar(im̂,m)

(46)

with

Fseq(im̂) = − 1

2β

∑
λ′±1

p∑
Nτ=0

∫
dk′

(
p

Nτ

)
P s∞(k

′, λ′)

× log[eβ[J (1)s +J (2)s (2Nτ−p)] + e−β[J (1)s +J (2)s (2Nτ−p)]k′e2βim̂λ′
] (47)
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Figure 4. Phase diagrams of model (4) for p = 2 and with J (1)s = J
(1)
� = 0, for sequential

(left) and parallel dynamics (right). Lines separate regions with different numbers of locally stable
solutions for the pure state overlap m, calculated from equations (47) and (48). In region A the
only stable solution is the trivial one. The transition A → B is second order, whereas B → C and
F → C are first order (see also figure 5). In regions B,C and F there are 1, 2 and 3 locally stable
m > 0 states, respectively (see also free-energy graphs, figure 7).

Fpar(im̂,m) = − 1

4β

∑
τ1=±1

∑
ξ ′=±1

p−1∑
Nτ=0

p∑
Nη=0

∫
dk′′

(
p − 1
Nτ

)(
p

Nη

)
Pp∞(k

′′, τ1ξ
′)

× log[2 cosh[βJ (2)� mξ
′ + 2βJ (1)s + βJ (2)s (τ1 − 2p + 2Nτ + 2Nη + 1)]

+2 cosh[βJ (2)� mξ
′ + βJ (2)s [2Nη − 2Nτ + τ1 + 1]]k′′e2βim̂τ1ξ

′
]. (48)

As in the solution of model (5) in section 3, the parallel dynamics fixed-point problem (46), (48)
takes the form of a set of coupled equations, which makes the evaluation of bifurcation points
essentially more laborious.

The solutions of the above equations, for J (1)s = J (1)� = 0 and for the simplest non-trivial
case p = 2, are shown in the phase diagrams of figure 4. One distinguishes between four
different regions, dependent on the number of locally stable ‘pure state’ solutions: region A
with m = 0 only, region B with one locally stable m > 0 state (and one m < 0), regions C
with two locally stable m > 0 states (and two m < 0 ones) and region F with three m > 0
states (and three m < 0 ones). Note that region F is created at the point where regions C
start overlapping. The transition A → B is second order, whereas B → C and F → C are
first order. The two qualitatively different types of bifurcations are also shown in figure 5 (left
panel), where we draw the solution(s) of the overlap m as a function of βJ� along the line
βJs = −1.8 (a line crossing regions A, B and C). The zero noise region (T = β−1 = 0) for
the phase diagram of figure 4 is shown in figure 5 (right panel) where we draw the transition
lines separating recall regimes A, B, C and F in the (J (2)� , T ) plane for J (2)s = −4.

In equations (47) and (48) we observe that, due to the explicit appearance of the variable
p in the solution of the overlap order parameter (which is due to short-range interactions,
originating from expressions of the form exp[β(J (1)s + J (2)s

∑p

µ=1 ξ
µ

i ξ
µ

i+1)], see e.g. (31)), it
will no longer be true that the pure state ansatz leads to solutions which are independent of the
number of stored patterns, as is the case for standard mean-field Hopfield networks. This is
also shown in the phase diagrams of figure 6, which have been constructed from (47), (48) with
J (1)s = J (1)� = 0 and for p = 15. We observe a significant increase in the number of transition
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Figure 5. Left: sequential dynamics bifurcation diagram corresponding to the phase diagram of
figure 4 along the line βJ (2)s = −1.8. The transition A → B in figure 4 is shown here as a
continuous bifurcation of the trivial solution whereas the two other bifurcations (at βJ (2)� ≈ 6.76

and βJ (2)� ≈ 7.7) correspond to the first-order transitions B → C. Right: alternative presentation

of the phase diagram of figure 4 drawn in the (J (2)� , T ) plane (with T = β−1) for J (2)s = −4.
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Figure 6. Phase diagrams of model (4) for p = 15 and with J (1)� = J
(1)
s = 0, for sequential

dynamics (left) and parallel dynamics (right). Lines separate regions with different numbers
of locally stable solutions of the pure state overlap m, calculated from equations (47) and (48).
Compared with the cases p = 1 (figure 1) and p = 2 (figure 4), we observe a significant increase
in the number of transition lines, caused by the explicit dependence of equations (47) and (48) on
p. The diagrams involve three regions: region A where m = 0 only, region B with one m > 0
locally stable state and regions C (appearing inside each of the transition-line pairs) with two locally
stable m > 0 states. The transition A → B is second order, whereas all transitions B → C are
first order. Also note the appearance of further transition lines in the upper right quadrant, where
J
(2)
� , J

(2)
s > 0 (and the lower left quadrant for the parallel dynamics case).

lines, as well as additional transition lines appearing in the quadrant J (2)� , J
(2)
s > 0 (and also

in J (2)� , J
(2)
s < 0 for the parallel case). Such effects become more and more prominent as the

number of patterns increases. It is also worth noting that figures 4 and 6 imply that all ‘pairs’
of first-order transition lines point to the origin of the {J (2)s , J (2)� } plane.

Finally, due to the occurrence of imaginary saddle points in (46) and our strategy to
eliminate the variable m̂ by using the equation ∂mφ(m, m̂) = 0, it need not be true that the
saddle point with the lowest value of φ(m, m̂) is the minimum of φ (complex conjugation can
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induce curvature sign changes, and in addition the minimum could occur at boundaries or as
special limits). To remove this uncertainty we have evaluated the sequential dynamics free
energy φseq(m, m̂) (16) after elimination of the conjugate variable m̂ by using ∂mφ(m, m̂) = 0
(middle row of figure 7) and ∂m̂φ(m, m̂) = 0 (lower row of figure 7) which shows that, although
the convexity of the free-energy graphs is indeed affected, the location of the minima is not.

5. Benchmark tests

We now compare our results with simple benchmark cases. First, the solution of model (4)
should reduce to the model of Amit et al [1], for regimes where p � N , upon removing short-
range connectivity, i.e. for J (1)s = J (2)s = 0. Indeed we find that in this limit the probability
distributions P seq

∞ (k) and P par
∞ (k) of the stochastic variables (22) and (39) both reduce to the

delta peak: δ[k− 1]. This simplifies the solution of our problem and allows us to write for the
free energies

φseq(m, m̂) = −im0m̂0 − imm̂−m0θ

−1

2
J
(1)
� m

2
0 − 1

2
J
(2)
� m

2 − 1

β
〈log 2 cosh[βi(m̂0 + m̂ξ)]〉ξ

φpar(m, m̂) = −im0m̂0 − imm̂−m0θ

− 1

β
〈log 2 cosh[βi(m̂0 + m̂ξ)]〉ξ − 1

β
〈log 2 cosh[β(θ + J (1)� m0 + J (2)� mξ)]〉ξ .

Simple differentiation with respect to {m0, m̂0,m, m̂} verifies that in the mean-field limit
the pure order parameter solutions reduce to m = 〈ξ tanh[β(θ + J (1)� m0 + ξJ (2)� m)]〉ξ and
m0 = 〈tanh[β(θ + J (1)� m0 + ξJ (2)� m)]〉ξ as they should.

Our second benchmark test is provided by the exact solution of model (5), section 3. We
can immediately map model (4) to model (5) by setting J (2)� = J (2)s = 0. We then find that the
key variables {kj } of equations (21) and (37) are given by a simple deterministic map. In fact,
for both sequential and parallel dynamics we find that kseq and kpar evolve towards the same
fixed point

k = e2βJse−βim̂

[
− sinh[βim̂] +

√
sinh2[βim̂] + e−4βJs

]
which (at the relevant saddle points) can be verified to lead to the fixed-point equation (9) of
model (5), namely

m = G(m; J�, Js) with G(m; J�, Js) = sinh[βJ�m]√
sinh2[βJ�m] + e−4βJs

.

Thirdly, we have also compared the free energies of model (4), as given by our present
solution, with that which one finds when using the alternative random-field technique of [15].
The latter relies on performing the spin summations in R = ∑

σ F(σ) (31) and deriving
appropriate functionsA(ξ ·ξ′) andB(ξ ·ξ′) such that the identity cosh[β(Js(ξ ·ξ′)σ ′− im̂ξ)] =
exp[β(A(ξ · ξ′)σ ′ + B(ξ · ξ′))] is true for σ ′ ∈ {−1, 1}. For instance, for expression (31) of
sequential dynamics this leads to

− lim
N→∞

1

βN
logRseq = − lim

N→∞
1

2βN

N∑
i=1

log[4 cosh[β(J si,i+1 + hi)] cosh[β(J si,i+1 − hi)]]

where

hi+1 = im̂ξi+1 − 1

2
log

[
cosh[β(J si,i+1 − hi)]
cosh[β(J si,i+1 + hi)]

]
J slk = J (1)s + J (2)s ξl · ξk
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(with h1 = im̂ξ1) and is in complete agreement with the free energy as found from (16), (24),
(27).

Finally, for the special case J (1)s = J (1)� = J (2)� = 0 and p = 1 (short-range bond disorder
and absence of long-range interactions) our model reduces to the classical short-range random-
bond Ising model [12], in which we expect the integrated density P̂∞(k) (29) to acquire, at
least in certain parameter regions, the form of the highly non-analytic devil’s staircase [13,14].
In this special case the density (29) reduces (at saddle points {im̂0 = −θ, im̂ = 0}) to

P̂i+1(k, λ) = 1

2

{
P̂i

(
e2βθ ke

βJsλ − e−βJsλ

eβJsλ − ke−βJsλ , 1
)

+ P̂i

(
e2βθ ke

−βJsλ − eβJsλ

e−βJsλ − keβJsλ ,−1

)}
where λ = ±1 represents bond-disorder. One can now prove by induction that if the identity
P̂i(k, 1) = P̂i(k,−1) is true then also P̂i+1(k, 1) = P̂i+1(k,−1), so that (assuming ergodicity
and uniqueness of the stationary density) the above expression reduces to a single recursive
equation

P̂i+1(k) = 1

2

{
P̂i

(
e2βθ ke

βJs − e−βJs

eβJs − ke−βJs

)
+ P̂i

(
e2βθ ke

−βJs − eβJs

e−βJs − keβJs
)}

which is recognized as equation 10 of [12], upon a simple re-definition of our stochastic
variables: {kn = e−2βim̂0Rn,↓/Rn,↑} → {e2βim̂0Rn,↑/Rn,↓} in (21). In the present benchmark
case we have also verified the identity found in [16] relating short-range random-field models
between sequential and parallel dynamics, namely

ψseq(ψseq(k; ξ ′′ξ ′, θ), ξ ′ξ, θ) = ψpar(k; ξ ′′ξ ′, ξ ′ξ, θ)

(which is the key identity to prove that in the thermodynamic limit sequential and parallel
random-field models lead to the same physical states). Here,ψseq(· · ·) andψpar(· · ·) correspond
to the functions defined in (22) and (39). Indeed, functional iteration of (22) (with the saddle
point requirements im̂0 = −θ − J (1)� m0 and im̂ = −J (2)� m) gives (39).

6. Theory versus simulations

In order to test our results further, we have performed extensive simulation experiments of
the process (1), for model (4). In all cases the initial state is prepared randomly, with non-
zero correlation only with pattern {ξ 1

i }. Our simulation results for the model which gives the
phase diagram of figure 4 (p = 2 and J (1)� = J (1)s = 0) are shown in figure 7 (upper row)
where we draw the equilibrium value of the recall overlap m1(t → ∞) as a function of the
initial state m1(t = 0). We have performed our experiments for three different regions of the
phase diagram: region B (one m > 0 stable state), region C (two m > 0 stable states) and
region F (threem > 0 stable states). In regions B and C the simulation experiments verify the
appearance and location of multiple ergodic sectors; to compare with the theoretical results,
see also the free-energy graphs in the middle and lower panels of figure 7. In region F the
simulation experiments show that the system can enter only two possible domains of attraction
(excluding thus the theoretically predicted statem ≈ 0.32). This is due to (i) the system’s finite
size (N = 1000), in combination with (ii) the (relatively) small energy barrier separating the
two physical statesma ≈ 0.32 andmb ≈ 0.68 (this allows the system to move from statema to
mb with a non-negligible probability). Our restriction to system sizeN = 1000 is prompted by
the extremely long equilibration times (of the order of O(106) flips/spin). This, in turn, is due
to domain formation: large clusters of neurons tend to freeze in specific configurations. As a
consequence, in order for neurons to flip, the entire domain has to flip. In figure 8 (left graph) we
show the value of the condensed overlap as a function of time in region F. We see that, starting
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Figure 7. Upper row: sequential dynamics simulation results of the dynamical process (1), with
model (4), for a system with p = 2 patterns. These were carried out in three different regions C,
F and B of the phase diagram of figure 4. System size: N = 1000. Initial conditions are random,
subject to prescribed correlations with pattern {ξ1

i }. We show the equilibrium state m(t → ∞) of
the ‘pure state’ overlapm1 (full circles), as well as the overlapm2 (open diamonds), as functions of
the initial state m(t = 0). Finite size effects are of the order O(N−1/2) ≈ 0.03. Middle and lower
rows: free energy per neuron φseq(m, im̂), after elimination of the conjugate order parameter m̂
via ∂mφseq(m, im̂) = 0 (middle row), and similarly after elimination of m̂ via ∂m̂φseq(m, im̂) = 0

(lower row). Left column: βJ (2)� = 14 and βJ (2)s = −3.5 (region C of the phase diagram of

figure 4), middle column: βJ (2)� = 18.5 and βJ (2)s = −4 (region F), and right column: βJ (2)� = 8

and βJ (2)s = −3.5 (region B). For all graphs J (1)� = J (1)s = 0.

from an initial statem1(0) ≈ 0.09, the system gradually approaches the theoretically predicted
locally stable state, where it indeed stays for a period of ≈ 4 × 105 flips/spin. Due to finite
size effects, however, this state is thermodynamically unstable. A sudden transition to a new
meta-stable state is then observed, generated by the flipping of entire domains. Equilibrium
is reached in these simulations at about 2 × 106 flips/spin, where a second and final jump
transition takes place. In the right graph of figure 8 we show a simulation experiment carried
out in region C, starting from initial conditions m1(0) ≈ 0.08. Here equilibrium is reached
after about 106 flips/spin, and due to a (relatively) high energy barrier separating the twom > 0
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Figure 8. Simulation results for regions F (left) and C (right) of the phase diagram of figure 4. We
show the evolution of the ‘pure state’ overlap order parameter as a function of time. In region F
(left) the theory predicts a locally stable state atm ≈ 0.32, which, due to finite size effects, appears
here only as a meta-stable state. Two prominent jump transitions occur, until finally equilibrium is
reached, at m ≈ 0.68 (the jumps indicate domain-flipping). In region C (right) full equilibration
still requires simulation times of the order of O(106) flips/spin, after which the result is in true
agreement with the theory.

physical states (see energy graphs in regions C, left column of figure 7) there is no domain-
related transition. In all our experiments the value of the non-selected pattern overlapm2(t) is
found to remain zero (open diamond points), which justifies a posteriori our pure state ansatz.

7. Discussion

In this paper we have presented an exact equilibrium solution for a specific class of spatially
structured Ising spin (attractor) neural network models, in which there is competition induced
by the presence of two qualitatively different types of synaptic interactions: those operating
only between nearest neighbours in a 1D chain (short range), and those operating between any
pair of neurons (long range). The values taken by the interactions present are given by Hebbian-
type rules, as in the more familiar mean-field attractor networks. We have solved these models
by using a combination of mean- and random-field techniques for both sequential and parallel
dynamics. As in the standard 1D RFIM-type models our expressions for the disorder-averaged
free energy per neuron take the form of integrals over the distribution of a random variable,
which represents the ratio of conditioned partition functions. This distribution can be evaluated
numerically without much effort, and the key macroscopic observables then follow via simple
differentiation.

We found that there are regions in parameter space where information processing between
the two types of synaptic interactions can induce phenomena which are quite novel in the
arena of associative memory models, such as the appearance of multiple locally stable states,
and of first-order transitions between them, even for finite p and upon making the ‘pure state’
ansatz. These peculiarities come to life particularly in regions where short- and long-range
synapses compete most strongly, for instance, where one has Hebbian long-range interactions
in combination with anti-Hebbian short-range ones, and they become more evident when
increasing the number of stored patterns. Particularly in the upper left quadrant of parameter
space {J� > 0, Js < 0} one observes the appearance of an increasing number of dynamic
transition lines (first- and second-order ones). This feature is in sharp contrast with the



(1 + ∞)-dimensional attractor neural networks 5807

conventional (infinite-range) Hopfield-like networks [1], where for finite p the ‘pure state’
ansatz automatically renders the remaining order parameter independent of the number of
patterns stored. Phenomena such as simultaneous existence of multiple locally stable states
(in which the quality of pattern recall depends crucially on initial conditions) can play a
potentially useful role: poor cue signals can no longer evoke pattern recall. We also found that
parallel dynamics transition lines in parameter space are exact reflection in the origin of those
in sequential dynamics and that the relevant macroscopic observables can be obtained from
those of sequential dynamics via simple transformations. One important analytical step here
(parallel dynamics) has been the dimensionality reduction of the relevant stochastic process:
we found that one can express the initially three stochastic components via a single one which
allows for great analytical simplifications. Simulation experiments also show that the dynamics
of the model are highly non-trivial, with plateaus and jump discontinuities, caused by complex
domain formation and domain interaction, which would justify a study in itself.

In a similar fashion one could now also study more complicated systems, where (in addition
to the long-range synapses) the short-range synapses reach beyond nearest neighbours. Such
models can still be solved in one-dimension using the techniques employed here. A different
type of generalization would be to allow for a type of competition between synapses which
would correspond to having stored patterns with different (pattern dependent) embedding
strengths, as in [20]. All these will be subjects of a future work.
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